

POLS 6382 | Quantitative Methods III: Maximum Likelihood

Estimation

Section: 15177 | Face-to-Face

We 09:00 AM-12:00 PM | University of Houston; Philip Guthrie Hoffman Hall; PGH 310

Prerequisite(s): POLS 6380 and POLS 6381. Maximum likelihood estimation, generalized linear models, discrete-choice models, event count models, models for event history data, and models for non-random samples.

General Course Information

Ling Zhu

Department: Department of Political Science

Email: lzhu4@cougarnet.uh.edu

Phone: 713-7432649

Office Hours

Mondays, 9:30am-noon, or by appointment. Office: PGH402

Songeun (Emily) Lee (Teaching Assistant)

Department: Department of Political Science

Email: selee5@CougarNet.UH.EDU

Office Hours

Tuesdays, 10:00am-noon, or by appointment. Office: PGH407

Course Objectives and Student Learning Outcomes

Course Description

This is the third course in quantitative methods for the University of Houston's political science Ph.D. program. This course introduces students to several new and useful generalized linear models, with an emphasis on likelihood-based methods. In this course, we emphasize that good social science research involves an appropriately developed theory and a correctly specified statistical model to map the underlying theory. Maximum likelihood (ML) provides a wide range of models for evaluating uncertainty. Most of our attention will be given to models where the traditional assumptions of the ordinary least squares (OLS) regression are violated, because the dependent variable is non-continuous. Among the topics we cover are logit and probit models for both binary and ordinal dependent variables, discrete choice models for multiple alternatives (e.g. voting for multiple candidates or parties), event count models (e.g., international conflicts in a decade, presidential appointments during an administrative term, congressional hearings in a year, etc.), models for survival (time-to-event) data, and models for non-random selection (e.g., when you observe voters', but not nonvoters' preferences).

Learning Objectives

This course will prepare students to read and critically evaluate quantitative political science research that applies maximum likelihood estimation. Furthermore, it will prepare students to conduct their research, paying attention to data management, data visualization, model specification, diagnostic analysis, post-estimation analysis, and the presentation of results. The goal of this course is to train students to produce independent, original research and to provide a valuable set of methodological tools for developing dissertation research.

Prerequisites

The background required for the course is a good introduction to probability and statistical inference, and at least one good regression course. Some familiarity with linear algebra and calculus is also assumed.

Required Instructional Materials

Textbooks and Additional Readings

- Long, J. Scott. 1997. *Regression Models for Categorical and Limited Dependent Variables*. Thousand Oaks, CA: Sage Publications. (An excellent introduction to the basic models covered in this course, very clearly presented.)

- Faraway, Julian J. 2006. *Extending the Linear Model with R: Generalized Linear, Mixed Effects, and Nonparametric Regression Models*. Boca Raton, FL: Chapman&Hall/CRC. (An accessible introduction to various generalized linear models with R.)
- Box-Steffensmeier, Janet M. and Bradford D. Jones. 2004. *Event History Modeling: A Guide for Social Scientists*. New York, NY: Cambridge University Press. (An excellent text on event history analysis.)
- (Recommended) King, Gary. 1989. *Unifying Political Methodology: The Likelihood Theory of Statistical Inference*. University of Michigan Press. (The book that made maximum likelihood required study for political science. This is the Michigan Press reprint of King's original Cambridge University Press Book.)
- (Recommended) Long, J. Scott and Jeremy Freese. 2014. *Regression Models for Categorical Dependent Variables Using Stata*. College Station, TX: Stata Press. (A well-stocked toolbox for implementing MLE models using Stata.)
- (Recommended) Wickham, Hadley, Mine Ceinkaya-Rundel, and Garrett Grolemund. 2023. *R for Data Science*. 2nd Edition, O'Reilly Media. (A thorough and accessible introduction to R for how to import, transform, visualize, and model data. Free online version available.)
- Additional readings as necessary, all of which will be available on Canvas and/or through JSTOR.

Software, Statistical, and Otherwise

You can use whatever statistical software you choose to complete the homework assignments, so long as the manner in which your results are generated and the conclusions are transparent. However, due to the limit of lecture and lab time, my teaching assistant and I will primarily support R. All lectures and statistical labs will be taught-with an emphasis on R.

R is a statistical environment and high-level programming language for data analysis and visualization. It is the GNU version of the S language. R is a free and open-source software. The current (June 2025) version of \texttt{R} is 4.5.1. (Great Square Root). Unlike Stata and most other statistical packages, it operates by assigning values to objects in the workspace.

The [Comprehensive R Archive Network \(CRAN\)](#) is the go-to spot for all things R-related. We will also use [RStudio](#), which is an integrated development environment for R. It includes a console, a syntax-highlighting editor that supports direct code execution, and tools for plotting,

history, debugging, and workspace management. I encourage each student to bring his/her laptop to class. We will use R on Wednesdays for various data examples. Lab handouts will contain relevant data examples and replication code written in the R language. Students may also check out laptops from the [UH Library Equipment Services](#).

Course Schedule, Assignments, and Assessments

Assignments and Grading

Grades will be based on multiple course requirements.

- First, **homework assignments** will be set up to use R/RStudio. I encourage group study/discussion on these data assignments, but students should compile their reports independently. The goal of homework assignments is to help you learn the materials and enable you to master various statistical models covered in this course. Throughout the semester, there will be five homework assignments. Each will be distributed in class and due by Friday noon on Canvas in the subsequent week, followed by a review session on the following Wednesday. Please refer to the weekly course calendar in the next section for the specific schedule of each assignment. Homework assignments account for 40% of the final grade, weighted equally for each assignment.
- There is also a required **term paper**. The term paper must focus on a substantive question that is related to your main research area and applies the statistical methods covered in this course. You should format your term paper according to [the APSA Style Manual for Political Science \(Revised 2006\)](#). The term paper counts for 40% of the final grade.
- At the end of the semester, we will hold a mini-conference to allow you to present your term paper and receive feedback from your peers. Each working paper will be assigned a peer "reviewer" (i.e., a fellow student in this class). The peer reviewer will provide a one-page review of the working paper. Your research presentation will account for 10% of the final grade. Your peer review and regular class participation together will account for 10% of the final grade.

The work you turn in (both exercises and term paper) should be of professional quality. That means you **MUST** use proper mathematical notation. If you use Microsoft Word, I insist that you master their equation editors to make professional-looking papers. Likewise, you must learn how

to include figures and edit tables properly within your word processor. You would be MUCH better off learning and using [LaTeX](#) and [R Markdown](#). If possible, you should convert your Word document to a PDF file before submitting it.

Discussion and Lecture Topics

Lecture Topics and Weekly Course Calendar

Week 1 (August 27): Course Overview

- Review the syllabus; no required readings.

Week 2 (September 3) Introduction to MLE

Readings

- Faraway Chapter 1; Long Chapter 1.

Lab 1: Getting Started with R and RMarkdown.

- Review RMarkdown
- Basic data workflow in R
- Distribute Homework 1.

Week 3 (September 10), APSA Meeting, no class.

- Work on Homework 1.

Week 4 (September 17) Maximum Likelihood: Derivation and Properties

Readings

- Long, Chapter 2
- Aldrich, John. 1997. "R. A. Fisher and the Making of Maximum Likelihood 1912-1922." *Statistical Science*, 12(3): 162-176.
- Franklin, Charles H. 1991. "Eschewing Obfuscation? Campaigns and the Perception of Senate Incumbents. *American Political Science Review* 85:1193-1214.

- (Recommended) Fisher, Ronald A. 1925. "Theory of Statistical Estimation." *Proceedings of the Cambridge Philosophical Society*, 22: 700-725.
- (Recommended) Neyman, Herze. 1934. "On the Two Different Aspects of the Representative Methods: The *Method of Stratified Sampling and the Method of Purposive Selection*." *Journal of the Royal Statistical Society*, 97(4): 558-625.
- (Recommended) King 1989, Chapter 1-3 (skim), 4.1-4.3.

Lab 2: Data Visualization Using R and Normal Generalized Linear Models

- Review data visualization using *ggplot2* and workflow tools from *tidyverse*.
- Estimating a linear regression model using MLE.
- Homework 1 due by Noon, September 19 (Friday).

Week 5 (September 24) Binary Response Models: Basics

Readings

- Long, Chapters 3.
- Faraway, Chapter 2.
- Herron, Michael C. 2000. "Postestimation Uncertainty in Limited Dependent Variable Models." *Political Analysis*, 8(1): 83-98.
- Esarey, Justin, and Andrew Pierce. 2012. "Assessing Fit Quality and Testing for Misspecification in Binary-Dependent Variable Models." *Political Analysis*, 20(4): 480-500.
- Zhu, Ling. 2017. "Voices from the Frontline: Network Participation and Local Support for National Policy Reforms." *Journal of Public Administration Research and Theory*, 27(2): 284-300.
- Mize, Trenton D., Long Doan, and J. Scott Long. 2019. "A General Framework for Comparing Predictions and Marginal Effects across Models." *Sociological Methodology*, 48(1):152-189.
- Howell-Mooney, Michael. 2024. "Inconvenient Truths about Logistic Regression and the Remedy of Marginal Effects." *Public Administration Review*, 84(6): 1218-1236.
- (Recommended) Berry, William D., Jacqueline H.R. Demeritt, and Justin Esarey. 2010. "Testing for Interaction in Binary Logit and Probit Models: Is a Product Term Essential?" *American Journal of Political Science*, 54(1): 248-266.

- (Recommended) Zhu, Ling, and Christine Lipsmeyer. 2015. "Policy Feedback and Economic Risk: The Influence of Privatization on Social Policy Preferences." *Journal of European Public Policy*, 22:1489-1511.

Lab 3: Estimating a Logit/Probit Model

- Estimating a Logit/Probit Model
- Reporting and visualizing model results.
- Assessing model fit.
- Review Homework 1.
- Distribute Homework 2.

Week 6 (October 1): Binary Response Models: Additional Topics

Readings

- Long, Chapter 4.
- (Recommended) King, Chapter 5.3.
- Nagler, Jonathan. 1994. "Scobit: An Alternative Estimator to Logit and Probit." *American Journal of Political Science*, 38(1): 230-255.
- Alvarez, R. Michael and John Brehm. 1995. "American Ambivalence Toward Abortion Policy: A Heteroskedastic Probit Method for Assessing Conflicting Values." *American Journal of Political Science*, 39(4): 1055-1082.
- King, Gary, and Langche Zeng. 2001. "Logistic Regression in Rare Events Data." *Political Analysis*, 9:137-163.
- King, Gary, and Langche Zeng. 2001. "Explaining Rare Events in International Relations." *International Organizations*, 53(3): 693-715.
- Zorn, Christopher. 2017. "A Solution to Separation in Binary Response Models." *Political Analysis*, 13(2):

Lab 4: Binary Response Models: Additional Topics.

- Skewed binary outcome data.
- Heteroskedastic Probit model.
- Rare event logit.

- Homework 2 due by noon, October 3 (Friday).

Week 7 (October 8): Ordered Response Models

Readings

- Long, Chapter 5.
- Faraway, Chapter 5.3
- (Recommended) King, Chapter 5.4.
- Jones, Bradford S. and Michael E. Sobel. 2000. "Modeling Direction and Intensity in Semantically Balanced Ordinal Scales: An Assessment of Congressional Incumbent Approval." *American Journal of Political Science*, 44(1):174-185.
- Franklin, Charles H. and Liane C. Kosaki. 1989. "Republican Schoolmaster: The U.S. Supreme Court, Public Opinion, and Abortion." *American Political Science Review*, 83(3):751-771.
- Espenshade, Thomas J., and Haishan Fu. 1997. "An Analysis of English Language Proficiency among U.S. Immigrants." *American Sociological Review*, 62(2): 288-305.
- Sanders, Mitchell. 2001. "Uncertainty and Turnout." *Political Analysis*, 9(1):45-57.

Lab 5: Models for Ordinal Outcomes

- Estimating an ordered logit/probit model.
- Reporting and visualizing model results.
- Review Homework 2.
- Distribute Homework 3.

Week 8 (October 15): Models for Multinomial Data

Readings

- Long, Chapter 6.
- Faraway, Chapter 5
- Born, Richard. 1990. "Surge and Decline, Negative Voting, and the Midterm Loss Phenomenon: A Simultaneous Choice Analysis." *American Journal of Political Science*, 34(3): 615-645.

- Whitten Guy D. and Harvey D. Palmer. 1996. "Heightening Comparativists' Concern for Model Choice: Voting Behavior in Great Britain and the Netherlands." *American Journal of Political Science*, 40(1):231-260.
- Dow, Jay K., and James W. Endersby. 2004. "Multinomial Probit and Multinomial Logit: A Comparison of Choice Models for Voting Research." *Electoral Studies*, 23(1):107-122.

Lab 6: Multinomial Logit and Probit Models

- Estimating and reporting a multinomial Logit/Probit Model
- Assessing the parallel regression assumption
- Homework 3 due by Noon, October 17 (Friday).

Week 9 (October 22): Censored and Truncated Variables

Readings

- Long, Chapter 7.
- Sigelman, Lee, and Langche Zeng. 1999. "Analyzing Censored and Sample-Selected Data with Tobit and Heckit Models." *Political Analysis*, 8(2):167-182.
- Dubin, Jeffery A. and Douglas Rivers. 1989. "Selection Bias in Linear Regression, Logit and Probit Models. *Sociological Methods and Research*, 18(2-3): 360-390.
- Timpone, Richard J. 1998. "Structure, Behavior, and Voter Turnout in the United States." *American Political Science Review*, 92(1):145-158.
- Lassen, David Dreyer. 2005. "The Effects of Information on Voter Turnout: Evidence from a Natural Experiment. *American Journal of Political Science*, 49(1):103-118.
- Evans, Georgina, Gary King, Margaret Schwenzfeier, and Abhradeep Thakurta. 2023. "Statistical Valid Inferences from Privacy-Protected Data." *American Political Science Review*, 117(4): 1275-1290.

Lab 7: Models for Censored and Sample-Selected Data

- Models for censored and truncated data.
- Heckman selection model.
- Review Homework 3
- Distribute Homework 4.

Week 10 (October 29): Count Data Models: Basics

Readings

- Long, Chapter 8.
- Faraway, Chapter 3
- King, Gary. 1988. "Statistical Models for Political Science Event Counts: Bias in Conventional Procedures and Evidence for Exponential Poisson Regression Model." *American Journal of Political Science*, 32(3):838-863
- (Recommended) King, Chapter 5.5-5.10.

Lab 8: Count Data Models: Poisson and Negative Binomial Regression

- Poisson regression model
- Negative Binomial regression model
- Assessing overdispersion
- Homework 4 due by Noon, October 31 (Friday).

Week 11 (November 5): Count Data Models: Extensions

Readings

- King, Gary. 1989a. "Variance Specification in Event Count Models: From Restrictive Assumptions to a Generalized Estimator." *American Journal of Political Science*, 33(3): 762-784.
- King, Gary. 1989b. "A Seemingly Unrelated Poisson Regression Model." *Sociological Methods and Research*, 17(3): 235-255.
- King, Gary. 1989c. "Event Count Models for International Relations: Generalization and Applications." *International Studies Quarterly*, 33 (2):123-147.
- Winkelmann, Rainer. 2000. "Seemingly Unrelated Negative Binomial Regression." *Oxford Bulletin of Economics and Statistics*, 62(4): 553-560.
- Zeileis, Achim, Christian Kleiber, and Simon Jackman. 2008. "Regression Models for Count Data in R." *Journal of Statistical Software*, 27(8), Online.
- Sidumo, Bonelwa, Energy Sonono, and Isaac Takaizda. 2024. "Count Regression and Machine Learning Techniques for Zero-Inflated Overdispersed Count Data: Application to

Ecological Data." *Annals of Data Science*, 11:803-817.

- (Recommended) King, Chapters 8.3, 9.4-9.5.

Lab 9: Event Count Models: Advanced Topics

- Zero-inflated count data model
- Hurdle model
- Seemingly Unrelated Poisson and Negative Binomial Regression
- Review Homework 4.

Week 12 (November 12): Event History Data

Readings

- Box-Steffensmeier, Janet M. and Bradford D. Jones. 2004. *Event History Modeling: A Guide for Social Scientists*, Chapters 1-3.
- Faraway, Chapters 8-9
- Zorn, Christopher. 2000. "Modeling Duration Dependence." *Political Analysis*, 8(3):367-380.
- Box-Steffensmeier, Janet M. and Christopher Zorn. 2001. "Duration Models and Proportional Hazards in Political Science." *American Journal of Political Science*, 45(4): 972-988.
- Keele, Luke. 2010. "Nonproportionally Difficult: Testing for Nonproportional Hazards in Cox Models." *Political Analysis*, 18(2):189-205.
- (Recommended) Bienen, Henry, and Nicolas van de Walle. 1992. "A Proportional Hazard Model of Leadership Duration." *The Journal of Politics*, 54(3): 685-717.
- (Recommended) Teachman, Jay D. and Mark D. Hayward. 1993. "Interpreting Hazard Rate Models." *Sociological Methods and Research*, 21(3):340-371.
- (Recommended) Alt, James, and Gary King. 1994. "Transfers of Governmental Power: The Meaning of Time Dependence." *Comparative Political Studies*, 27(2): 190-210.
- (Recommended) McCarty, Nolan, and Rose Razaghian. 1999. "Advice and Consent: Senate Responses to Executive Branch Nominations." *American Journal of Political Science*, 43(4): 1122-1143.

- (Recommended) Allison, Paul D. 2014. *Event History and Survival Analysis*. Second Edition. Thousand Oaks, CA: Sage Publications, Chapters 1-2.

Lab 10: Cox's Proportional Hazards Model and Extensions

- Cox regression model
- Package simPH
- Testing for Non-proportional hazards and duration dependence
- Distribute Homework 5.

Week 13 (November 19): MLE and Measurement Model

Readings

- Quinn, Kevin M. 2004. "Bayesian Factor Analysis for Mixed Ordinal and Continuous Responses." *Political Analysis*, 12(4): 338-353.
- Bertelli, Anthony et al. 2013. "Measuring Agency Attributes with Attitudes Across Time: A Method and Examples Using Large-Scale Federal Surveys." *Journal of Public Administration Research and Theory*, 25(2): 513-544.
- Ling Zhu. 2015. "Measurement Approaches in Public Administration Surveys." In Melvin Dubnick and Dominic Bearfield, Ed. *Encyclopedia of Public Administration and Public Policy*, 3rd edition, 3173.
- Ling Zhu and Christine S. Lipsmeyer. 2015. "Policy Feedback and Economic Risk: The Influence of Privatization on Social Policy Preferences." *European Journal of Public Policy*, 22(10): 1481-1511.
- Ling Zhu, Scott E. Robinson, and Rene Torenvlied. 2015. "A Bayesian Approach to Measurement Bias in Networking Studies." *The American Review of Public Administration*, 45(5): 542-564.

Lab 11: IRT Model and Bayesian Factor Analysis for Mixed Measurement Scales

- Factor analysis
- Bayesian factor analysis
- Item-Response-Theory (IRT) model
- Homework 5 due by noon, November 21(Friday).

Week 14 (November 26): Thanksgiving Holiday, no class.

Week 15 (December 3): MLE and Multilevel Mixed Effects Model

Readings

- Gelman, Andrew, and Jennifer Hill. 2007. *Data Analysis Using Regression and Multilevel/Hierarchical Models*. Cambridge University Press, *Chapter 1, Chapters 13-15*
- Guo, Guang. 2000. ``Multilevel Modeling for Binary Data.'' *Annual Review of Sociology*, 26: 441--462.
- Marc Hooghe, Tim Reeskens, Dietlind Stolle, Ann Trappers. 2009. "Ethnic Diversity and Generalized Trust in Europe: A Cross-National Multilevel Study." *Comparative Political Studies*, 42(2), 198-223.
- Austin, Peter C., Henrik Stryhn, George Leckie, and Juan Merlo. 2017. "Measures of Clustering and Heterogeneity in Multilevel Poisson Regression Analyses of Rates and Count Data." *Statistics in Medicine*, 37(4): 572--589.
- Kim, Jun et al. 2017. "Income, Financial Barriers to Health Care and Public Health Expenditure: Multilevel Analysis of 28 Countries." *Social Science & Medicine*, 176: 158-165.
- (Recommended) Tamborini, Christopher R., Changhwan Kim, and Arthur Sakamoto. 2015. ``Education and Lifetime Earnings in the United States.'' *Demography*, 52: 1383--1407.
- (Recommended) Huang, Jim, and Ellen Barnidge. 2016. ``Low-income Children's Participation in the National School Lunch Program and Household Food Insufficiency.'' *Social Science & Medicine*, 150: 8--14

Lab 13: Introduction to Hierarchical Linear Mixed Effects Models

- HLM for cross-sectional data
- Panel data and the analysis of change/trajectory
- Multilevel models with limited dependent variables
- Term paper first draft due by noon, November 29 (Saturday).

Week 16 (December 8, Makeup Class) Research Mini-Conference

- Presentation schedules TBA.

- Peer review due by noon, December 6th (Saturday).
- Term paper due by noon, December 10th (Wednesday).

Grading Rubrics and Weights

Final grades will be assigned based on the following grading components and weights:

Five exercises: 40%, equally weighted for each.

Term paper: 40%

Research presentation: 10%

Participation and peer review: 10%.

Final Grades:

A = 100-95 (Excellent)

A- = 94-90

B+ = 89-87 (Good)

B = 86-84

B- = 83-80 (Fair)

C+ = 79-77

C = 76-74 (Poor)

C- = 73-70

D+ = 69-67

D = 66-64

D- = 63-60

F = 59-0 (Failing)

Course Policies and Procedures

UH Email

Please check and use your Cougarnet email for communications related to this course. Faculty use the CougarNet email to respond to course-related inquiries, such as grade queries or progress reports, for reasons of FERPA. To access your Cougarnet email, login to your Microsoft 365 account with your Cougarnet credentials. Visit the University Information Technology (UIT) website for instructions on how to connect your Cougarnet email on a mobile device.

Usage of Artificial Intelligence (AI)

From day-to-day tasks to research and data analysis, Artificial Intelligence (AI) is expected to be the next great change agent in how people, working teams, and organizations operate. AI technology is also transforming the field of data science and the practice of data analysis. Although the core focus of this class is not on AI in data analytics, this course offers some opportunities for students to engage with AI tools (e.g., ChatGPT or Google Genimi) in homework assignments. The purpose is to teach students to use AI tools in a safe and responsible manner and to evaluate the tasks performed by AI tools critically.

Syllabus Changes

The weekly class calendar is subject to modifications. Notice of such changes will be announced as quickly as possible through email.

Late Assignment Submission

Late homework assignments will incur a one-letter-grade penalty each day after the deadline. For example, an A-paper turned in one day late will become a B-paper. Late work will only be accepted without a grade penalty if the student has university-accepted excuses.

University Policies and Student Support Resources

Mental Health and Wellness Resources

The University of Houston has a number of resources to support students' mental health and overall wellness, including [CoogsCARE](#) and the [UH Go App](#). [UH Counseling and Psychological Services \(CAPS\)](#) offers 24/7 mental health support for all students, addressing various concerns like stress, college adjustment and sadness. CAPS provides individual and couples counseling, group therapy, workshops and connections to other support services on and off- campus. For assistance visit uh.edu/caps, call 713-743-5454, or visit a [Let's Talk](#) location in-person or virtually. Let's Talk are daily, informal confidential consultations with CAPS therapists where no appointment or paperwork is needed.

Need Support Now? If you or someone you know is struggling or in crisis, help is available. Call CAPS crisis support 24/7 at 713-743-5454, or the National Suicide and Crisis Lifeline: call or text 988, or chat 988lifeline.org.

Title IX/Sexual Misconduct

Per the UHS Sexual Misconduct Policy, your instructor is a “responsible employee” for reporting purposes under Title IX regulations and state law and must report incidents of sexual misconduct (sexual harassment, non-consensual sexual contact, sexual assault, sexual exploitation, sexual intimidation, intimate partner violence, or stalking) about which they become aware to the Title IX office (known at UH as the Equal Opportunity Services office or "EOS"). Please know there are places on campus where you can make a report in confidence. You can find more information about resources on the UH [Title IX/Sexual Misconduct Resources page](#). Please note that you may also report concerns of discrimination based on your protected class identity to EOS.

Reasonable Academic Adjustments/Auxiliary Aids

The University of Houston is committed to providing an academic environment and educational programs that are accessible for its students. Any student with a disability who is experiencing barriers to learning, assessment or participation is encouraged to contact the Justin Dart, Jr. Student Accessibility Center (Dart Center) to learn more about academic accommodations and support that may be available to them. Students seeking academic accommodations will need to register with the Dart Center as soon as possible to ensure timely implementation of approved accommodations. Please contact the Dart Center by visiting the website: <https://uh.edu/accessibility/> calling (713) 743-5400, or emailing jdcenter@Central.UH.EDU.

The [Student Health Center](#) offers a Psychiatry Clinic for enrolled UH students. Call 713-743-5149 during clinic hours, Monday through Friday 8 a.m. - 4:30 p.m. to schedule an appointment.

The [A.D. Bruce Religion Center](#) offers spiritual support and a variety of programs centered on well-being.

The [Center for Student Advocacy and Community \(CSAC\)](#) is where you can go if you need help but don't know where to start. CSAC is a "home away from home" and serves as a [resource hub](#) to help you get the resources needed to support academic and personal success. Through our [Cougar Cupboard](#), all students can get up to 30 lbs of FREE groceries a week. Additionally, we provide 1:1 appointments to get you connected to on- and off-campus resources related to essential needs, safety and advocacy, and more. The [Cougar Closet](#) is a registered student organization advised by our office and offers free clothes to students so that all Coogs can feel good in their fit. We also host a series of cultural and community-based events that fosters social connection and helps the cougar community come closer together. Visit the CSAC homepage or follow us on Instagram: @uh_CSAC and @uhcupbrd. YOU belong here.

Women and Gender Resource Center

The mission of the [WGRC](#) is to advance the University of Houston and promote the success of all students, faculty, and staff through educating, empowering, and supporting the UH community. The WGRC suite is open to you. Stop by the office for a study space, to take a break, grab a snack, or check out one of the WGRC programs or resources. Stop by Student Center South room B12 (Basement floor near Starbucks and down the hall from Creation Station) from 9 am to 5 pm Monday through Friday.

Academic Honesty Policy

High ethical standards are critical to the integrity of any institution, and bear directly on the ultimate value of conferred degrees. All UH community members are expected to contribute to an atmosphere of the highest possible ethical standards. Maintaining such an atmosphere requires that any instances of academic dishonesty be recognized and addressed. The [UH Academic Honesty Policy](#) is designed to handle those instances with fairness to all parties involved: the students, the instructors, and the University itself. All students and faculty of the University of Houston are responsible for being familiar with this policy.

Excused Absence Policy

Regular class attendance, participation, and engagement in coursework are important contributors to student success. Absences may be excused as provided in the University of Houston [Undergraduate Excused Absence Policy](#) and [Graduate Excused Absence Policy](#) for reasons including medical illness of student or close relative, death of a close family member, legal or government proceeding that a student is obligated to attend, recognized professional and educational activities where the student is presenting, and University-sponsored activity or athletic competition. Under these policies, students with excused absences will be provided with an opportunity to make up any quiz, exam or other work that contributes to the course grade or a satisfactory alternative. Please read the full policy for details regarding reasons for excused absences, the approval process, and extended absences. Additional policies address absences related to [military service](#), [religious holy days](#), [pregnancy and related conditions](#), and [disability](#).

Recording of Class

Students may not record all or part of class, livestream all or part of class, or make/distribute screen captures, without advanced written consent of the instructor. If you have or think you may have a disability such that you need to record class-related activities, please contact the [Justin Dart, Jr. Student Accessibility Center](#). If you have an accommodation to record class-related activities, those recordings may not be shared with any other student, whether in this course or not, or with any other person or on any other platform. Classes may be recorded by the instructor. Students may use instructor's recordings for their own studying and notetaking. Instructor's recordings are not authorized to be shared with anyone without the prior written approval of the instructor. Failure to comply with requirements regarding recordings will result in a disciplinary referral to the Dean of Students Office and may result in disciplinary action.