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1 Supplementary Statistics for the Empirical Bayes IRT Model

Table 1: Summary of Coefficients based on the Generalized Partial Credit Model

Networking Node Cat.1 Cat. 2 Cat.3 Cat.d Cat.b Discrimination
Local Public Officials -2.523  -1.570 1.575 2.781 4.168 0.763
State Public Officials -2.317  0.298 2476 2.433 3.278 1.056
State Regulatory Agencies -2.142  0.680 2.450 2.261 3.476 1.483
State Medicaid -0.399  1.316 2.581 2.005 1.914 1.067
State Medicare -0.109  1.620 2.371 2.816 1.805 0.755
Accrediting Agencies -2.097  2.659 3.536 1.676 5.822 0.756
Social Service Agencies -0.078  0.538 3.259 3.926 1.951 0.470
Civic Groups -2.178  -2.347 1.305 3.947 5.059 0.470
Insurance Companies -0.500  0.700 3.304 2.593 1.315 0.463
State Hospital Associations -2.571  -2.332 1.576 2978 3.944 0.515
National Hospital Associations -1.515  0.708 2.336 2.401 3.338 0.737
Other Professional Associations -1.370 -0.235 2.676 2.950 3.974 0.633
Table 2: Summary of Coeflicients based on the Graded Response Model
Networking Node Cat.1 Cat. 2 Cat.3 Cat.d Cat.b Discrimination
Local Public Officials -2.817 -1.146 1.172 2.933 4.869 1.231
State Public Officials -2.059  0.198 2.138 3.212 4.357 1.526
State Regulatory Agencies -1.898  0.534 2244 3.056 4.258 1.922
State Medicaid -0.508  1.089 2.346 2.871 3.390 1.667
State Medicare -0.392 1.226 2427 3.336 3.964 1.330
Accrediting Agencies -2.196  1.928 3.853 4.665 7.539 1.013
Social Service Agencies -0.864  0.692 2.647 4.166 5.137 0.953
Civic Groups -3.171  -1.500 1.004 3.531 6.037 0.867
Insurance Companies -1.043  0.627 2.366 3.367 4.211 0.970
State Hospital Associations -3.329 -1.581 1.016 3.023 5.037 0.919
National Hospital Associations -1.449  0.443 2.032 3.174 4.525 1.268
Other Professional Associations -1.583 -0.048 1.983 3.438 5.039 1.196
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Figure 2: Item Information Characteristic Curves Based on the Non-Bayesian Generalized

Partial Credit Model
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Item Category Characteristic Curves based on the Non-Bayesian Graded Response

Figure 3
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Figure 4: Item Information Characteristic Curves Based on the Non-Bayesian Graded Re-

sponse Model
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Figure 5: Measurement Agreement Between the Factor Index and the Two Empirical Bayes
IRT Indices

Networking Index: Empirical Bayes GRM
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2 Identification and Estimation of the Bayesian Generalized Partial Credit
Model

We specify noninformative priors for «;, and ;. Because the latent dimension of managerial
networking (6;), the discrimination parameter (c;), and the difficulty parameter ( ;) are
simultaneously estimated, we set () to be 0. In other words, choice 1 (“Never”) in all
12 networking nodes are constrained to be 0 for the purpose of identification. Adding this
restriction does not come at the cost of altering the possible outcomes (Bafumi et al., 2005}
Curtis, [2010; Fox, 2010]).

Following |Gelman| (2006) and [Li and Baser| (2012), we specify prior distributions as the
following;:

a ~ N(0,0.001)1(0,)
B ~ N(0,0.001)I(—3.5,3.5) (1)
0~ N(u,0)

We specify a as a normal distribution with mean 0 and precision 0.001. We also set «
to take positive values. The truncation is chosen because « is often positive and near 1 in
IRT applications. The diffuse prior specifies a large-size variance and a zero mean, as such,
it does not inform the model about the specific mean value of «. Similarly, we specify a
noninformative prior for £, with mean 0 and precision 0.001. Based on the results of the
empirical Bayes GPCM, we place most parameter values in the range (-3.5, 3.5). We did
not set 6 to be a standard normal distribution. Instead, we adopt the strategy of prior
specification in [Li and Baser| (2012), and set the hyper-prior, ;1 (underlying mean for the
latent networking dimension, #) to be a normal distribution with mean 0 and precision 0.001.
The hyper-prior, o is defined as a uniform distribution. Similar to the identification strategy
used in [Treier and Jackman (2008), we center each estimated 6; to have mean zero and scale
them based on the estimated o. In other words, we impose the rescaling to the MCMC
outputs by each iteration. Accordingly, we rescale o; and 3;; using the same strategy.

p~ N(0,0.001) @)
o ~ dunif(0,10)
To initialize the model, we use JAGS to randomly generate starting values for all the
parameters. The Bayesian GPCM is estimated by running 200,000 iterations of Markov
Chain Monte Carlo (MCMC) simulations. We specify the burn-in period equals to the first
20,000 (10% )iterations, and restore every 60th sampled value for rescaled «;, B;, 6;. To
optimize the time for model convergence, we set an initial sampling phase, during which the
sampler adapts to improve computation efficiency. The 5,000 samples generated during this
adaptive phase is not based on Markov Chain and are not used in inference.



Post estimation diagnostic analysis does not find evidence for non-convergence and non-
stationary posterior means (see Section 5). The specific BUGS code used in our Bayesian
analysis are adapted from prior works by (Curtis (2010) and Li and Baser| (2012]).

BUGS Code

1.model

2. {

3. for (i in 1:n){
4. for (j in 1:p){
5. numer[i,j,1] <- 0
6

7

8

[

. enume[i,j,1] <-
. denom[i,j,1] <- 1
.t
9. }
10. for (i in 1:n){
11. thetali] ~ dnorm(mu, tau)
12. for (j in 1:p){
13. for (k in 2:K[j1{
14. numer[i,j,k] <- alphal[jl*(thetalil-b[j,k])+numer[i,j,k-1]
15. enumel[i,j,k] <- exp(uumer[i,j,k])
16. denom[i,j,k] <- enumel[i,j,k] + denom[i,j,k-1]
17. }
18. Denoml[i,j,1] <- denoml[i,j,K[j113}}

20. for (i in 1:n){

21. for (j in 1:p){

22. for (k in 1:K[j1){

23. probli,j,k] <- enumel[i,j,k]/Denoml[i,j,1]
24. }

25. yl[i,j] ~ dcat(probli,j,1:K[j1])

26. }

27. }

28. # Priors

29. mu ~ dnorm(0.0, 0.001) # Hyper-priors
30. sigma~dunif (0, 10)

31. tau<-1/(sigma*sigma)

32. Sigma<-1/sqrt(tau)

34. for (i in 1:n){

35. theta.adjl[i] <- (thetal[i]-mu)/Sigma # Rescale thetali]
36. }

37. for (j in 1:p){

38. blj, 1] <- 0.0

39. b.adjlj, 1] <- 0.0

40. alphalj]l ~ dnorm(0, 0.001) I(0, 5) #Prior for alphalj]
37. alpha.adj[j] <- alphalj]l * Sigma # Rescale alphalj]
38. for (k in 2:K[j]1) {

39. blj, k] ~ dnorm(0, 0.001) I(-3.5, 3.5) # Prior for betalj,k]
40. b.adjlj, k] <= (b[j,k]-mu)/Sigma} # Rescale betalj,k]
41. }

42. }
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R/JAGS Code

# Define data and parameters

forJags<-list(y=Y,n=nrow(Y),p=ncol(Y) ,K=apply(Y, 2, max,na.rm=TRUE))
param<-c("alpha","alpha.adj","b","b.adj","theta.adj")

#Define Model Specification

BayesianIRT<-jags.model (file="GPCM2.bug", data=forJags,n.chains=2,n.adapt=5000)
# Run JAGS

arpa.model<-coda.samples(BayesianIRT,n.iter=200000,
n.burnin=20000,thin=60,variable.names=param)

00 N O O WN -

3 Diagnostic Graphs of the Full Bayesian GPCM

Figure 6: Autocorrelation Plots of Selected Parameters
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Figure 7: Trace Plots of Selected Discrimination Parameters
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Figure 8: Trace Plots of Selected Difficulty Parameters
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4 Supplementary Statistics of the Full Bayesian IRT Model

Table 3: Summary of Posterior Means of the Difficulty and Discrimination Parameters based
on the Full Bayesian GPCM

Networking Node Cat.1 Cat. 2 Cat.3 Cat.d Cat.5 Discrimination
Local Public Officials -2.455 -1.573 1.563 2.801 3.939 0.777
State Public Officials -2.327  0.300 2.487 2.449 3.290 1.056
State Regulatory Agencies -2.165  0.687 2.478 2.254 3.489 1.465
State Medicaid -0.403  1.355 2.651 2.208 1.846 1.028
State Medicare -0.100  1.685 2433 2.890 1.731 0.724
Accrediting Agencies -2.515  2.606 3.505 1.862 4.110 0.780
Social Service Agencies -0.070  0.548 3.389 3.805 2.129 0.460
Civic Groups -2.129  -2.264 1.269 3.905 4.136 0.493
Insurance Companies -0.504  0.739 3.452 2706 1.272 0.441
State Hospital Associations -2.441 -2.319 1.551 2.990 3.783 0.527
National Hospital Associations -1.532  0.720 2.361 2.429 3.456 0.731
Other Professional Associations -1.382 -0.242 2.706 3.308 3.741 0.629
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59 Specify the Monte Carlo Experiments

As mentioned in the manuscript, we conduct four Monte Carlo experiments with sample
sizes to be 50, 100, 600, and 850 to compare parameter estimations for the competing models
reported in Table 5 and 6. Given each sample size, we follow the following steps to run the
Monte Carlo simulations:

1. Fix the three networking variables X;(i = 1,2, 3) in four randomly generated data samples
(n=50, 100, 600, 850) from their underlying distributions.To approximate the simulated data
sample to the observed values, we use the observed means and standard deviations of the
three networking indices as the parameters of the underlying distributions. All simulated
data samples are generated from random normal distributions.

2. Fix the baseline parameter values based on the point slope coefficients 5; reported in Model
1-6.

3. Generate baseline values for Y (the dependent variable) as a function of the simulated samples
of the three networking variables: Y; = 5.X; + p.

4. Setting the underlying distribution of the stochastic component i to be a random standard-
ized normal distribution. This specification is the same across all Monte Carlo experiments
to make results comparable.

5. Estimate the relationship between Y; and X; using an OLS specification.
6. Repeat step 1-5 with 1000 replications and summarize mean parameter estimation, 3.

7. Compare mean parameter estimations learned form the Monte Carlo experiments with the
baseline slope parameters to evaluate relative bias. Because the true underlying parameters
associated with the networking variable is unknown, the above noted Monte Carlo experi-
ments evaluate parameter bias based on how the observed coefficients (i.e. slopes estimated
from Model 1-6) deviate from the quantities learned from repeated random samples through
the simulation. In theory, the two values should converge over a large number of repeated
samples and the difference should be minimal in a single sample with large n. In other words,
the bias evaluated here has a relative nature. We compute relative bias of parameter estimates
as a promotion using %, where f3 is the average parameter estimate summarized based on
1000 valid Monte Carlo simulations and § denotes the baseline values (parameter estimated
based on actual data). A relative bias greater than 5% is considered as substantial. Because
we fixed the stochastic component g in all models, the mean estimated slope parameter in
each model is a function of sample size (n) and measurement uncertainty embedded in each
simulated networking variable. In this way, we can compare how the relative bias change
cross models using different networking measures but with the same simulated sample size.
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